
September 1993

Order Number: 270251-004

MCSÉ 51 Family of
Microcontrollers
Architectural Overview

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

MCSÉ-51 Family of Microcontrollers
Architectural Overview

CONTENTS PAGE

INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

CHMOS Devices ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

MEMORY ORGANIZATION IN MCSÉ-51
DEVICES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

Logical Separation of Program and Data
Memory ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

Program Memory ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Data Memory ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 4

THE MCSÉ-51 INSTRUCTION SET ÀÀÀÀÀÀÀÀ 5

Program Status Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Addressing Modes ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

CONTENTS PAGE

Arithmetic Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

Logical Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

Data Transfers ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

Boolean Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Jump Instructions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

CPU TIMING ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

Machine Cycles ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

Interrupt Structure ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

ADDITIONAL REFERENCES ÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

3

MCSÉ-51 ARCHITECTURAL OVERVIEW

INTRODUCTION

The 8051 is the original member of the MCSÉ-51 family, and is the core for all MCS-51 devices. The features of the
8051 core are:

8-bit CPU optimized for control applications

Extensive Boolean processing (single-bit logic) capabilities

64K Program Memory address space

64K Data Memory address space

On-chip Program Memory

128 bytes of on-chip Data RAM

32 bidirectional and individually addressable I/O lines

Two 16-bit timer/counters

Full duplex UART

6-source/5-vector interrupt structure with two priority levels

On-chip clock oscillator

The basic architectural structure of this 8051 core is shown in Figure 1.

270251–1

Figure 1. Block Diagram of the 8051 Core

1

MCSÉ-51 ARCHITECTURAL OVERVIEW

270251–2

Figure 2. MCSÉ-51 Memory Structure

CHMOS Devices

Functionally, the CHMOS devices (designated with
‘‘C’’ in the middle of the device name) are all fully
compatible with the 8051, but being CMOS, draw less
current than an HMOS counterpart. To further exploit
the power savings available in CMOS circuitry, two re-
duced power modes are added:

Software-invoked Idle Mode, during which the CPU
is turned off while the RAM and other on-chip
peripherals continue operating. In this mode, cur-
rent draw is reduced to about 15% of the current
drawn when the device is fully active.

Software-invoked Power Down Mode, during which
all on-chip activities are suspended. The on-chip
RAM continues to hold its data. In this mode the
device typically draws less than 10 mA.

Although the 80C51BH is functionally compatible with
its HMOS counterpart, specific differences between the
two types of devices must be considered in the design of
an application circuit if one wishes to ensure complete
interchangeability between the HMOS and CHMOS
devices. These considerations are discussed in the Ap-
plication Note AP-252, ‘‘Designing with the
80C51BH’’.

For more information on the individual devices and
features, refer to the Hardware Descriptions and Data
Sheets of the specific device.

MEMORY ORGANIZATION IN
MCSÉ-51 DEVICES

Logical Separation of Program and
Data Memory

All MCS-51 devices have separate address spaces for
Program and Data Memory, as shown in Figure 2. The
logical separation of Program and Data Memory allows
the Data Memory to be accessed by 8-bit addresses,
which can be more quickly stored and manipulated by
an 8-bit CPU. Nevertheless, 16-bit Data Memory ad-
dresses can also be generated through the DPTR regis-
ter.

Program Memory can only be read, not written to.
There can be up to 64K bytes of Program Memory. In
the ROM and EPROM versions of these devices the
lowest 4K, 8K or 16K bytes of Program Memory are
provided on-chip. Refer to Table 1 for the amount of
on-chip ROM (or EPROM) on each device. In the
ROMless versions all Program Memory is external.
The read strobe for external Program Memory is the
signal PSEN (Program Store Enable).

2

MCSÉ-51 ARCHITECTURAL OVERVIEW

Data Memory occupies a separate address space from
Program Memory. Up to 64K bytes of external RAM
can be addressed in the external Data Memory space.
The CPU generates read and write signals, RD and
WR, as needed during external Data Memory accesses.

External Program Memory and external Data Memory
may be combined if desired by applying the RD and
PSEN signals to the inputs of an AND gate and using
the output of the gate as the read strobe to the external
Program/Data memory.

Program Memory

Figure 3 shows a map of the lower part of the Program
Memory. After reset, the CPU begins execution from
location 0000H.

As shown in Figure 3, each interrupt is assigned a fixed
location in Program Memory. The interrupt causes the
CPU to jump to that location, where it commences exe-
cution of the service routine. External Interrupt 0, for
example, is assigned to location 0003H. If External In-
terrupt 0 is going to be used, its service routine must
begin at location 0003H. If the interrupt is not going to
be used, its service location is available as general pur-
pose Program Memory.

270251–3

Figure 3. MCSÉ-51 Program Memory

The interrupt service locations are spaced at 8-byte in-
tervals: 0003H for External Interrupt 0, 000BH for
Timer 0, 0013H for External Interrupt 1, 001BH for
Timer 1, etc. If an interrupt service routine is short
enough (as is often the case in control applications), it
can reside entirely within that 8-byte interval. Longer
service routines can use a jump instruction to skip over
subsequent interrupt locations, if other interrupts are in
use.

The lowest 4K (or 8K or 16K or 32K) bytes of Pro-
gram Memory can be either in the on-chip ROM or in
an external ROM. This selection is made by strapping
the EA (External Access) pin to either VCC or VSS.

In the 4K byte ROM devices, if the EA pin is strapped
to VCC, then program fetches to addresses 0000H
through 0FFFH are directed to the internal ROM. Pro-
gram fetches to addresses 1000H through FFFFH are
directed to external ROM.

In the 8K byte ROM devices, EA e VCC selects ad-
dresses 0000H through 1FFFH to be internal, and ad-
dresses 2000H through FFFFH to be external.

In the 16K byte ROM devices, EA e VCC selects ad-
dresses 0000H through 3FFFH to be internal, and ad-
dresses 4000H through FFFFH to be external.

If the EA pin is strapped to VSS, then all program
fetches are directed to external ROM. The ROMless
parts must have this pin externally strapped to VSS to
enable them to execute properly.

The read strobe to external ROM, PSEN, is used for all
external program fetches. PSEN is not activated for in-
ternal program fetches.

270251–4

Figure 4. Executing from External

Program Memory

The hardware configuration for external program exe-
cution is shown in Figure 4. Note that 16 I/O lines
(Ports 0 and 2) are dedicated to bus functions during
external Program Memory fetches. Port 0 (P0 in Figure
4) serves as a multiplexed address/data bus. It emits
the low byte of the Program Counter (PCL) as an ad-
dress, and then goes into a float state awaiting the arriv-
al of the code byte from the Program Memory. During
the time that the low byte of the Program Counter is
valid on P0, the signal ALE (Address Latch Enable)
clocks this byte into an address latch. Meanwhile, Port
2 (P2 in Figure 4) emits the high byte of the Program
Counter (PCH). Then PSEN strobes the EPROM and
the code byte is read into the microcontroller.

3

MCSÉ-51 ARCHITECTURAL OVERVIEW

Program Memory addresses are always 16 bits wide,
even though the actual amount of Program Memory
used may be less than 64K bytes. External program
execution sacrifices two of the 8-bit ports, P0 and P2, to
the function of addressing the Program Memory.

Data Memory

The right half of Figure 2 shows the internal and exter-
nal Data Memory spaces available to the MCS-51 user.

Figure 5 shows a hardware configuration for accessing
up to 2K bytes of external RAM. The CPU in this case
is executing from internal ROM. Port 0 serves as a
multiplexed address/data bus to the RAM, and 3 lines
of Port 2 are being used to page the RAM. The CPU
generates RD and WR signals as needed during exter-
nal RAM accesses.

270251–5

Figure 5. Accessing External Data Memory.

If the Program Memory is Internal, the Other

Bits of P2 are Available as I/O.

There can be up to 64K bytes of external Data Memo-
ry. External Data Memory addresses can be either 1 or
2 bytes wide. One-byte addresses are often used in con-
junction with one or more other I/O lines to page the
RAM, as shown in Figure 5. Two-byte addresses can
also be used, in which case the high address byte is
emitted at Port 2.

270251–6

Figure 6. Internal Data Memory

Internal Data Memory is mapped in Figure 6. The
memory space is shown divided into three blocks,
which are generally referred to as the Lower 128, the
Upper 128, and SFR space.

Internal Data Memory addresses are always one byte
wide, which implies an address space of only 256 bytes.
However, the addressing modes for internal RAM can
in fact accommodate 384 bytes, using a simple trick.
Direct addresses higher than 7FH access one memory
space, and indirect addresses higher than 7FH access a
different memory space. Thus Figure 6 shows the Up-
per 128 and SFR space occupying the same block of
addresses, 80H through FFH, although they are physi-
cally separate entities.

270251–7

Figure 7. The Lower 128 Bytes of Internal RAM

The Lower 128 bytes of RAM are present in all
MCS-51 devices as mapped in Figure 7. The lowest 32
bytes are grouped into 4 banks of 8 registers. Program
instructions call out these registers as R0 through R7.
Two bits in the Program Status Word (PSW) select
which register bank is in use. This allows more efficient
use of code space, since register instructions are shorter
than instructions that use direct addressing.

270251–8

Figure 8. The Upper 128 Bytes of Internal RAM

4

MCSÉ-51 ARCHITECTURAL OVERVIEW

270251–10

Figure 10. PSW (Program Status Word) Register in MCSÉ-51 Devices

The next 16 bytes above the register banks form a block
of bit-addressable memory space. The MCS-51 instruc-
tion set includes a wide selection of single-bit instruc-
tions, and the 128 bits in this area can be directly ad-
dressed by these instructions. The bit addresses in this
area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by
either direct or indirect addressing. The Upper 128
(Figure 8) can only be accessed by indirect addressing.
The Upper 128 bytes of RAM are not implemented in
the 8051, but are in the devices with 256 bytes of RAM.
(See Table 1).

Figure 9 gives a brief look at the Special Function Reg-
ister (SFR) space. SFRs include the Port latches, tim-
ers, peripheral controls, etc. These registers can only be
accessed by direct addressing. In general, all MCS-51
microcontrollers have the same SFRs as the 8051, and
at the same addresses in SFR space. However, enhance-
ments to the 8051 have additional SFRs that are not
present in the 8051, nor perhaps in other proliferations
of the family.

270251–9

Figure 9. SFR Space

Sixteen addresses in SFR space are both byte- and bit-
addressable. The bit-addressable SFRs are those whose
address ends in 000B. The bit addresses in this area are
80H through FFH.

THE MCSÉ-51 INSTRUCTION SET

All members of the MCS-51 family execute the same
instruction set. The MCS-51 instruction set is opti-
mized for 8-bit control applications. It provides a vari-
ety of fast addressing modes for accessing the internal
RAM to facilitate byte operations on small data struc-
tures. The instruction set provides extensive support for
one-bit variables as a separate data type, allowing direct
bit manipulation in control and logic systems that re-
quire Boolean processing.

An overview of the MCS-51 instruction set is presented
below, with a brief description of how certain instruc-
tions might be used. References to ‘‘the assembler’’ in
this discussion are to Intel’s MCS-51 Macro Assembler,
ASM51. More detailed information on the instruction
set can be found in the MCS-51 Macro Assembler Us-
er’s Guide (Order No. 9800937 for ISIS Systems, Order
No. 122752 for DOS Systems).

Program Status Word

The Program Status Word (PSW) contains several
status bits that reflect the current state of the CPU. The
PSW, shown in Figure 10, resides in SFR space. It con-
tains the Carry bit, the Auxiliary Carry (for BCD oper-
ations), the two register bank select bits, the Overflow
flag, a Parity bit, and two user-definable status flags.

The Carry bit, other than serving the functions of a
Carry bit in arithmetic operations, also serves as the
‘‘Accumulator’’ for a number of Boolean operations.

5

MCSÉ-51 ARCHITECTURAL OVERVIEW

The bits RS0 and RS1 are used to select one of the four
register banks shown in Figure 7. A number of instruc-
tions refer to these RAM locations as R0 through R7.
The selection of which of the four banks is being re-
ferred to is made on the basis of the bits RS0 and RS1
at execution time.

The Parity bit reflects the number of 1s in the Accumu-
lator: P e 1 if the Accumulator contains an odd num-
ber of 1s, and P e 0 if the Accumulator contains an
even number of 1s. Thus the number of 1s in the Accu-
mulator plus P is always even.

Two bits in the PSW are uncommitted and may be used
as general purpose status flags.

Addressing Modes

The addressing modes in the MCS-51 instruction set
are as follows:

DIRECT ADDRESSING

In direct addressing the operand is specified by an 8-bit
address field in the instruction. Only internal Data
RAM and SFRs can be directly addressed.

INDIRECT ADDRESSING

In indirect addressing the instruction specifies a register
which contains the address of the operand. Both inter-
nal and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be R0 or
R1 of the selected register bank, or the Stack Pointer.
The address register for 16-bit addresses can only be the
16-bit ‘‘data pointer’’ register, DPTR.

REGISTER INSTRUCTIONS

The register banks, containing registers R0 through R7,
can be accessed by certain instructions which carry a
3-bit register specification within the opcode of the in-
struction. Instructions that access the registers this way
are code efficient, since this mode eliminates an address
byte. When the instruction is executed, one of the eight
registers in the selected bank is accessed. One of four
banks is selected at execution time by the two bank
select bits in the PSW.

REGISTER-SPECIFIC INSTRUCTIONS

Some instructions are specific to a certain register. For
example, some instructions always operate on the Ac-
cumulator, or Data Pointer, etc., so no address byte is
needed to point to it. The opcode itself does that. In-
structions that refer to the Accumlator as A assemble
as accumulator-specific opcodes.

IMMEDIATE CONSTANTS

The value of a constant can follow the opcode in Pro-
gram Memory. For example,

MOV A, Ý100

loads the Accumulator with the decimal number 100.
The same number could be specified in hex digits as
64H.

INDEXED ADDRESSING

Only Program Memory can be accessed with indexed
addressing, and it can only be read. This addressing
mode is intended for reading look-up tables in Program
Memory. A 16-bit base register (either DPTR or the
Program Counter) points to the base of the table, and
the Accumulator is set up with the table entry number.
The address of the table entry in Program Memory is
formed by adding the Accumulator data to the base
pointer.

Another type of indexed addressing is used in the ‘‘case
jump’’ instruction. In this case the destination address
of a jump instruction is computed as the sum of the
base pointer and the Accumulator data.

Arithmetic Instructions

The menu of arithmetic instructions is listed in Table 2.
The table indicates the addressing modes that can be
used with each instruction to access the kbytel oper-
and. For example, the ADD A,kbytel instruction can
be written as:

ADD A,7FH (direct addressing)
ADD A,@R0 (indirect addressing)
ADD A,R7 (register addressing)
ADD A,Ý127 (immediate constant)

The execution times listed in Table 2 assume a 12 MHz
clock frequency. All of the arithmetic instructions exe-
cute in 1 ms except the INC DPTR instruction, which
takes 2 ms, and the Multiply and Divide instructions,
which take 4 ms.

Note that any byte in the internal Data Memory space
can be incremented or decremented without going
through the Accumulator.

One of the INC instructions operates on the 16-bit
Data Pointer. The Data Pointer is used to generate
16-bit addresses for external memory, so being able to
increment it in one 16-bit operation is a useful feature.

The MUL AB instruction multiplies the Accumulator
by the data in the B register and puts the 16-bit product
into the concatenated B and Accumulator registers.

6

MCSÉ-51 ARCHITECTURAL OVERVIEW

Table 2. A List of the MCSÉ-51 Arithmetic Instructions

Mnemonic Operation
Addressing Modes Execution

Dir Ind Reg Imm
Time (ms)

ADD A,kbytel A e A a kbytel X X X X 1

ADDC A,kbytel A e A a kbytel a C X X X X 1

SUBB A,kbytel A e A b kbytel b C X X X X 1

INC A A e A a 1 Accumulator only 1

INC kbytel kbytel e kbytel a 1 X X X 1

INC DPTR DPTR e DPTR a 1 Data Pointer only 2

DEC A A e A b 1 Accumulator only 1

DEC kbytel kbytel e kbytel b 1 X X X 1

MUL AB B:A e B x A ACC and B only 4

DIV AB A e Int [A/B]
ACC and B only

4
B e Mod [A/B]

DA A Decimal Adjust Accumulator only 1

The DIV AB instruction divides the Accumulator by
the data in the B register and leaves the 8-bit quotient
in the Accumulator, and the 8-bit remainder in the B
register.

Oddly enough, DIV AB finds less use in arithmetic
‘‘divide’’ routines than in radix conversions and pro-
grammable shift operations. An example of the use of
DIV AB in a radix conversion will be given later. In
shift operations, dividing a number by 2n shifts its n
bits to the right. Using DIV AB to perform the division

completes the shift in 4 ms and leaves the B register
holding the bits that were shifted out.

The DA A instruction is for BCD arithmetic opera-
tions. In BCD arithmetic, ADD and ADDC instruc-
tions should always be followed by a DA A operation,
to ensure that the result is also in BCD. Note that DA
A will not convert a binary number to BCD. The DA
A operation produces a meaningful result only as the
second step in the addition of two BCD bytes.

Table 3. A List of the MCSÉ-51 Logical Instructions

Mnemonic Operation
Addressing Modes Execution

Dir Ind Reg Imm
Time (ms)

ANL A,kbytel A e A .AND. kbytel X X X X 1

ANL kbytel,A kbytel e kbytel .AND. A X 1

ANL kbytel,Ýdata kbytel e kbytel .AND. Ýdata X 2

ORL A,kbytel A e A .OR. kbytel X X X X 1

ORL kbytel,A kbytel e kbytel .OR. A X 1

ORL kbytel,Ýdata kbytel e kbytel .OR. Ýdata X 2

XRL A,kbytel A e A .XOR. kbytel X X X X 1

XRL kbytel,A kbytel e kbytel .XOR. A X 1

XRL kbytel,Ýdata kbytel e kbytel .XOR. Ýdata X 2

CRL A A e 00H Accumulator only 1

CPL A A e .NOT. A Accumulator only 1

RL A Rotate ACC Left 1 bit Accumulator only 1

RLC A Rotate Left through Carry Accumulator only 1

RR A Rotate ACC Right 1 bit Accumulator only 1

RRC A Rotate Right through Carry Accumulator only 1

SWAP A Swap Nibbles in A Accumulator only 1

7

MCSÉ-51 ARCHITECTURAL OVERVIEW

Logical Instructions

Table 3 shows the list of MCS-51 logical instructions.
The instructions that perform Boolean operations
(AND, OR, Exclusive OR, NOT) on bytes perform the
operation on a bit-by-bit basis. That is, if the Accumu-
lator contains 00110101B and kbytel contains
01010011B, then

ANL A,kbytel

will leave the Accumulator holding 00010001B.

The addressing modes that can be used to access the
kbytel operand are listed in Table 3. Thus, the ANL
A,kbytel instruction may take any of the forms

ANL A,7FH (direct addressing)
ANL A,@R1 (indirect addressing)
ANL A,R6 (register addressing)
ANL A,Ý53H (immediate constant)

All of the logical instructions that are Accumulator-
specific execute in 1ms (using a 12 MHz clock). The
others take 2 ms.

Note that Boolean operations can be performed on any
byte in the lower 128 internal Data Memory space or
the SFR space using direct addressing, without having
to use the Accumulator. The XRL kbytel, Ýdata in-
struction, for example, offers a quick and easy way to
invert port bits, as in

XRL P1,Ý0FFH

If the operation is in response to an interrupt, not using
the Accumulator saves the time and effort to stack it in
the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the
Accumulator 1 bit to the left or right. For a left rota-
tion, the MSB rolls into the LSB position. For a right
rotation, the LSB rolls into the MSB position.

The SWAP A instruction interchanges the high and
low nibbles within the Accumulator. This is a useful
operation in BCD manipulations. For example, if the
Accumulator contains a binary number which is known
to be less than 100, it can be quickly converted to BCD
by the following code:

MOV B,Ý10
DIV AB
SWAP A
ADD A,B

Dividing the number by 10 leaves the tens digit in the
low nibble of the Accumulator, and the ones digit in the
B register. The SWAP and ADD instructions move the
tens digit to the high nibble of the Accumulator, and
the ones digit to the low nibble.

Data Transfers

INTERNAL RAM

Table 4 shows the menu of instructions that are avail-
able for moving data around within the internal memo-
ry spaces, and the addressing modes that can be used
with each one. With a 12 MHz clock, all of these in-
structions execute in either 1 or 2 ms.

The MOV kdestl, ksrcl instruction allows data to
be transferred between any two internal RAM or SFR
locations without going through the Accumulator. Re-
member the Upper 128 byes of data RAM can be ac-
cessed only by indirect addressing, and SFR space only
by direct addressing.

Note that in all MCS-51 devices, the stack resides in
on-chip RAM, and grows upwards. The PUSH instruc-
tion first increments the Stack Pointer (SP), then copies
the byte into the stack. PUSH and POP use only direct
addressing to identify the byte being saved or restored,

Table 4. A List of the MCSÉ-51 Data Transfer Instructions that Access Internal Data Memory Space

Mnemonic Operation
Addressing Modes Execution

Dir Ind Reg Imm
Time (ms)

MOV A,ksrcl A e ksrcl X X X X 1

MOV kdestl,A kdestl e A X X X 1

MOV kdestl, ksrcl kdestl e ksrcl X X X X 2

MOV DPTR,Ýdata16 DPTR e 16-bit immediate constant. X 2

PUSH ksrcl INC SP : MOV ‘‘@SP’’,ksrcl X 2

POP kdestl MOV kdestl, ‘‘@SP’’ : DEC SP X 2

XCH A,kbytel ACC and kbytel exchange data X X X 1

XCHD A,@Ri ACC and @Ri exchange low nibbles X 1

8

MCSÉ-51 ARCHITECTURAL OVERVIEW

but the stack itself is accessed by indirect addressing
using the SP register. This means the stack can go into
the Upper 128, if they are implemented, but not into
SFR space.

In devices that do not implement the Upper 128, if the
SP points to the Upper 128, PUSHed bytes are lost, and
POPped bytes are indeterminate.

The Data Transfer instructions include a 16-bit MOV
that can be used to initialize the Data Pointer (DPTR)
for look-up tables in Program Memory, or for 16-bit
external Data Memory accesses.

The XCH A, kbytel instruction causes the Accumu-
lator and addressed byte to exchange data. The XCHD
A,@Ri instruction is similar, but only the low nibbles
are involved in the exchange.

To see how XCH and XCHD can be used to facilitate
data manipulations, consider first the problem of shift-
ing an 8-digit BCD number two digits to the right. Fig-
ure 11 shows how this can be done using direct MOVs,
and for comparison how it can be done using XCH
instructions. To aid in understanding how the code
works, the contents of the registers that are holding the
BCD number and the content of the Accumulator are
shown alongside each instruction to indicate their
status after the instruction has been executed.

2A 2B 2C 2D 2E ACC

MOV A,2EH 00 12 34 56 78 78
MOV 2EH,2DH 00 12 34 56 56 78
MOV 2DH,2CH 00 12 34 34 56 78
MOV 2CH,2BH 00 12 12 34 56 78
MOV 2BH,Ý0 00 00 12 34 56 78

(a) Using direct MOVs: 14 bytes, 9 ms

2A 2B 2C 2D 2E ACC

CLR A 00 12 34 56 78 00
XCH A,2BH 00 00 34 56 78 12
XCH A,2CH 00 00 12 56 78 34
XCH A,2DH 00 00 12 34 78 56
XCH A,2EH 00 00 12 34 56 78

(b) Using XCHs: 9 bytes, 5 ms

Figure 11. Shifting a BCD Number

Two Digits to the Right

After the routine has been executed, the Accumulator
contains the two digits that were shifted out on the
right. Doing the routine with direct MOVs uses 14 code
bytes and 9 ms of execution time (assuming a 12 MHz
clock). The same operation with XCHs uses less code
and executes almost twice as fast.

To right-shift by an odd number of digits, a one-digit
shift must be executed. Figure 12 shows a sample of
code that will right-shift a BCD number one digit, us-
ing the XCHD instruction. Again, the contents of the
registers holding the number and of the Accumulator
are shown alongside each instruction.

2A 2B 2C 2D 2E ACC

MOV R1,Ý2EH 00 12 34 56 78 XX
MOV R0,Ý2DH 00 12 34 56 78 XX

loop for R1 e 2EH:

LOOP: MOV A,@R1 00 12 34 56 78 78
XCHD A,@R0 00 12 34 58 78 76
SWAP A 00 12 34 58 78 67
MOV @R1,A 00 12 34 58 67 67
DEC R1 00 12 34 58 67 67
DEC R0 00 12 34 58 67 67
CJNE R1,Ý2AH,LOOP

loop for R1 e 2DH: 00 12 38 45 67 45
loop for R1 e 2CH: 00 18 23 45 67 23
loop for R1 e 2BH: 08 01 23 45 67 01

CLR A 08 01 23 45 67 00
XCH A,2AH 00 01 23 45 67 08

Figure 12. Shifting a BCD Number

One Digit to the Right

First, pointers R1 and R0 are set up to point to the two
bytes containing the last four BCD digits. Then a loop
is executed which leaves the last byte, location 2EH,
holding the last two digits of the shifted number. The
pointers are decremented, and the loop is repeated for
location 2DH. The CJNE instruction (Compare and
Jump if Not Equal) is a loop control that will be de-
scribed later.

The loop is executed from LOOP to CJNE for R1 e

2EH, 2DH, 2CH and 2BH. At that point the digit that
was originally shifted out on the right has propagated
to location 2AH. Since that location should be left with
0s, the lost digit is moved to the Accumulator.

9

MCSÉ-51 ARCHITECTURAL OVERVIEW

EXTERNAL RAM

Table 5 shows a list of the Data Transfer instructions
that access external Data Memory. Only indirect ad-
dressing can be used. The choice is whether to use a
one-byte address, @Ri, where Ri can be either R0 or
R1 of the selected register bank, or a two-byte address,
@DPTR. The disadvantage to using 16-bit addresses if
only a few K bytes of external RAM are involved is
that 16-bit addresses use all 8 bits of Port 2 as address
bus. On the other hand, 8-bit addresses allow one to
address a few K bytes of RAM, as shown in Figure 5,
without having to sacrifice all of Port 2.

All of these instructions execute in 2 ms, with a
12 MHz clock.

Table 5. A List of the MCSÉ-51 Data

Transfer Instructions that Access

External Data Memory Space

Address
Mnemonic Operation

Execution
Width Time (ms)

8 bits MOVX A,@Ri
Read external

2
RAM @Ri

8 bits MOVX @Ri,A
Write external

2
RAM @Ri

16 bits MOVX A,@DPTR
Read external

2
RAM @DPTR

16 bits MOVX @DPTR,A
Write external

2
RAM @DPTR

Note that in all external Data RAM accesses, the Ac-
cumulator is always either the destination or source of
the data.

The read and write strobes to external RAM are acti-
vated only during the execution of a MOVX instruc-
tion. Normally these signals are inactive, and in fact if
they’re not going to be used at all, their pins are avail-
able as extra I/O lines. More about that later.

LOOKUP TABLES

Table 6 shows the two instructions that are available
for reading lookup tables in Program Memory. Since
these instructions access only Program Memory, the
lookup tables can only be read, not updated. The mne-
monic is MOVC for ‘‘move constant’’.

If the table access is to external Program Memory, then
the read strobe is PSEN.

Table 6. The MCSÉ-51 Lookup

Table Read Instructions

Mnemonic Operation
Execution
Time (ms)

MOVC A,@AaDPTR Read Pgm Memory 2
at (AaDPTR)

MOVC A,@AaPC Read Pgm Memory 2
at (AaPC)

The first MOVC instruction in Table 6 can accommo-
date a table of up to 256 entries, numbered 0 through
255. The number of the desired entry is loaded into the
Accumulator, and the Data Pointer is set up to point to
beginning of the table. Then

MOVC A,@AaDPTR

copies the desired table entry into the Accumulator.

The other MOVC instruction works the same way, ex-
cept the Program Counter (PC) is used as the table
base, and the table is accessed through a subroutine.
First the number of the desired entry is loaded into the
Accumulator, and the subroutine is called:

MOV A,ENTRYÐNUMBER
CALL TABLE

The subroutine ‘‘TABLE’’ would look like this:

TABLE: MOVC A,@AaPC
RET

The table itself immediately follows the RET (return)
instruction in Program Memory. This type of table can
have up to 255 entries, numbered 1 through 255. Num-
ber 0 can not be used, because at the time the MOVC
instruction is executed, the PC contains the address of
the RET instruction. An entry numbered 0 would be
the RET opcode itself.

Boolean Instructions

MCS-51 devices contain a complete Boolean (single-bit)
processor. The internal RAM contains 128 addressable
bits, and the SFR space can support up to 128 other
addressable bits. All of the port lines are bit-address-
able, and each one can be treated as a separate single-
bit port. The instructions that access these bits are not
just conditional branches, but a complete menu of
move, set, clear, complement, OR, and AND instruc-
tions. These kinds of bit operations are not easily ob-
tained in other architectures with any amount of byte-
oriented software.

10

MCSÉ-51 ARCHITECTURAL OVERVIEW

Table 7. A List of the MCSÉ-51

Boolean Instructions

Mnemonic Operation
Execution
Time (ms)

ANL C,bit C e C .AND. bit 2

ANL C,/bit C e C .AND. .NOT. bit 2

ORL C,bit C e C .OR. bit 2

ORL C,/bit C e C .OR. .NOT. bit 2

MOV C,bit C e bit 1

MOV bit,C bit e C 2

CLR C C e 0 1

CLR bit bit e 0 1

SETB C C e 1 1

SETB bit bit e 1 1

CPL C C e .NOT. C 1

CPL bit bit e .NOT. bit 1

JC rel Jump if C e 1 2

JNC rel Jump if C e 0 2

JB bit,rel Jump if bit e 1 2

JNB bit,rel Jump if bit e 0 2

JBC bit,rel Jump if bit e 1; CLR bit 2

The instruction set for the Boolean processor is shown
in Table 7. All bit accesses are by direct addressing. Bit
addresses 00H through 7FH are in the Lower 128, and
bit addresses 80H through FFH are in SFR space.

Note how easily an internal flag can be moved to a port
pin:

MOV C,FLAG
MOV P1.0,C

In this example, FLAG is the name of any addressable
bit in the Lower 128 or SFR space. An I/O line (the
LSB of Port 1, in this case) is set or cleared depending
on whether the flag bit is 1 or 0.

The Carry bit in the PSW is used as the single-bit Accu-
mulator of the Boolean processor. Bit instructions that
refer to the Carry bit as C assemble as Carry-specific
instructions (CLR C, etc). The Carry bit also has a
direct address, since it resides in the PSW register,
which is bit-addressable.

Note that the Boolean instruction set includes ANL
and ORL operations, but not the XRL (Exclusive OR)
operation. An XRL operation is simple to implement in
software. Suppose, for example, it is required to form
the Exclusive OR of two bits:

C e bit1 .XRL. bit2

The software to do that could be as follows:

MOV C,bit1
JNB bit2,OVER
CPL C

OVER: (continue)

First, bit1 is moved to the Carry. If bit2 e 0, then C
now contains the correct result. That is, bit1 .XRL. bit2
e bit1 if bit2 e 0. On the other hand, if bit2 e 1 C
now contains the complement of the correct result. It
need only be inverted (CPL C) to complete the opera-
tion.

This code uses the JNB instruction, one of a series of
bit-test instructions which execute a jump if the ad-
dressed bit is set (JC, JB, JBC) or if the addressed bit is
not set (JNC, JNB). In the above case, bit2 is being
tested, and if bit2 e 0 the CPL C instruction is jumped
over.

JBC executes the jump if the addressed bit is set, and
also clears the bit. Thus a flag can be tested and cleared
in one operation.

All the PSW bits are directly addressable, so the Parity
bit, or the general purpose flags, for example, are also
available to the bit-test instructions.

RELATIVE OFFSET

The destination address for these jumps is specified to
the assembler by a label or by an actual address in
Program Memory. However, the destination address
assembles to a relative offset byte. This is a signed
(two’s complement) offset byte which is added to the
PC in two’s complement arithmetic if the jump is exe-
cuted.

The range of the jump is therefore b128 to a127 Pro-
gram Memory bytes relative to the first byte following
the instruction.

11

MCSÉ-51 ARCHITECTURAL OVERVIEW

Jump Instructions

Table 8 shows the list of unconditional jumps.

Table 8. Unconditional Jumps

in MCSÉ-51 Devices

Mnemonic Operation
Execution
Time (ms)

JMP addr Jump to addr 2

JMP @AaDPTR Jump to AaDPTR 2

CALL addr Call subroutine at addr 2

RET Return from subroutine 2

RETI Return from interrupt 2

NOP No operation 1

The Table lists a single ‘‘JMP addr’’ instruction, but in
fact there are threeÐSJMP, LJMP and AJMPÐwhich
differ in the format of the destination address. JMP is a
generic mnemonic which can be used if the program-
mer does not care which way the jump is encoded.

The SJMP instruction encodes the destination address
as a relative offset, as described above. The instruction
is 2 bytes long, consisting of the opcode and the relative
offset byte. The jump distance is limited to a range of
b128 to a127 bytes relative to the instruction follow-
ing the SJMP.

The LJMP instruction encodes the destination address
as a 16-bit constant. The instruction is 3 bytes long,
consisting of the opcode and two address bytes. The
destination address can be anywhere in the 64K Pro-
gram Memory space.

The AJMP instruction encodes the destination address
as an 11-bit constant. The instruction is 2 bytes long,
consisting of the opcode, which itself contains 3 of the
11 address bits, followed by another byte containing the
low 8 bits of the destination address. When the instruc-
tion is executed, these 11 bits are simply substituted for
the low 11 bits in the PC. The high 5 bits stay the same.
Hence the destination has to be within the same 2K
block as the instruction following the AJMP.

In all cases the programmer specifies the destination
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the destina-
tion address into the correct format for the given in-
struction. If the format required by the instruction will
not support the distance to the specified destination ad-
dress, a ‘‘Destination out of range’’ message is written
into the List file.

The JMP @AaDPTR instruction supports case
jumps. The destination address is computed at execu-
tion time as the sum of the 16-bit DPTR register and

the Accumulator. Typically, DPTR is set up with the
address of a jump table, and the Accumulator is given
an index to the table. In a 5-way branch, for example,
an integer 0 through 4 is loaded into the Accumulator.
The code to be executed might be as follows:

MOV DPTR,ÝJUMPÐTABLE
MOV A,INDEXÐNUMBER
RL A
JMP @AaDPTR

The RL A instruction converts the index number (0
through 4) to an even number on the range 0 through 8,
because each entry in the jump table is 2 bytes long:

JUMPÐTABLE:
AJMP CASEÐ0
AJMP CASEÐ1
AJMP CASEÐ2
AJMP CASEÐ3
AJMP CASEÐ4

Table 8 shows a single ‘‘CALL addr’’ instruction, but
there are two of themÐLCALL and ACALLÐwhich
differ in the format in which the subroutine address is
given to the CPU. CALL is a generic mnemonic which
can be used if the programmer does not care which way
the address is encoded.

The LCALL instruction uses the 16-bit address format,
and the subroutine can be anywhere in the 64K Pro-
gram Memory space. The ACALL instruction uses the
11-bit format, and the subroutine must be in the same
2K block as the instruction following the ACALL.

In any case the programmer specifies the subroutine
address to the assembler in the same way: as a label or
as a 16-bit constant. The assembler will put the address
into the correct format for the given instructions.

Subroutines should end with a RET instruction, which
returns execution to the instruction following the
CALL.

RETI is used to return from an interrupt service rou-
tine. The only difference between RET and RETI is
that RETI tells the interrupt control system that the
interrupt in progress is done. If there is no interrupt in
progress at the time RETI is executed, then the RETI
is functionally identical to RET.

Table 9 shows the list of conditional jumps available to
the MCS-51 user. All of these jumps specify the desti-
nation address by the relative offset method, and so are
limited to a jump distance of b128 to a127 bytes from
the instruction following the conditional jump instruc-
tion. Important to note, however, the user specifies to
the assembler the actual destination address the same
way as the other jumps: as a label or a 16-bit constant.

12

MCSÉ-51 ARCHITECTURAL OVERVIEW

Table 9. Conditional Jumps in MCSÉ-51 Devices

Mnemonic Operation
Addressing Modes Execution

Dir Ind Reg Imm Time (ms)

JZ rel Jump if A e 0 Accumulator only 2

JNZ rel Jump if A i 0 Accumulator only 2

DJNZ kbytel,rel Decrement and jump if not zero X X 2

CJNE A,kbytel,rel Jump if A i kbytel X X 2

CJNE kbytel,Ýdata,rel Jump if kbytel i Ýdata X X 2

There is no Zero bit in the PSW. The JZ and JNZ
instructions test the Accumulator data for that condi-
tion.

The DJNZ instruction (Decrement and Jump if Not
Zero) is for loop control. To execute a loop N times,
load a counter byte with N and terminate the loop with
a DJNZ to the beginning of the loop, as shown below
for N e 10:

MOV COUNTER,Ý10
LOOP: (begin loop)

*
*
*

(end loop)
DJNZ COUNTER,LOOP
(continue)

The CJNE instruction (Compare and Jump if Not
Equal) can also be used for loop control as in Figure 12.
Two bytes are specified in the operand field of the in-
struction. The jump is executed only if the two bytes
are not equal. In the example of Figure 12, the two
bytes were the data in R1 and the constant 2AH. The
initial data in R1 was 2EH. Every time the loop was
executed, R1 was decremented, and the looping was to
continue until the R1 data reached 2AH.

Another application of this instruction is in ‘‘greater
than, less than’’ comparisons. The two bytes in the op-
erand field are taken as unsigned integers. If the first is
less than the second, then the Carry bit is set (1). If the
first is greater than or equal to the second, then the
Carry bit is cleared.

CPU TIMING

All MCS-51 microcontrollers have an on-chip oscillator
which can be used if desired as the clock source for the
CPU. To use the on-chip oscillator, connect a crystal or
ceramic resonator between the XTAL1 and XTAL2
pins of the microcontroller, and capacitors to ground as
shown in Figure 13.

270251–11

Figure 13. Using the On-Chip Oscillator

270251–12

A. HMOS or CHMOS

270251–13

B. HMOS Only

270251–14

C. CHMOS Only

Figure 14. Using an External Clock

13

MCSÉ-51 ARCHITECTURAL OVERVIEW

Examples of how to drive the clock with an external
oscillator are shown in Figure 14. Note that in the
HMOS devices (8051, etc.) the signal at the XTAL2 pin
actually drives the internal clock generator. In the
CHMOS devices (80C51BH, etc.) the signal at the
XTAL1 pin drives the internal clock generator. If only
one pin is going to be driven with the external oscillator
signal, make sure it is the right pin.

The internal clock generator defines the sequence of
states that make up the MCS-51 machine cycle.

Machine Cycles

A machine cycle consists of a sequence of 6 states,
numbered S1 through S6. Each state time lasts for two
oscillator periods. Thus a machine cycle takes 12 oscil-
lator periods or 1 ms if the oscillator frequency is
12 MHz.

Each state is divided into a Phase 1 half and a Phase 2
half. Figure 15 shows the fetch/execute sequences in

270251–15

Figure 15. State Sequences in MCSÉ-51 Devices

14

MCSÉ-51 ARCHITECTURAL OVERVIEW

states and phases for various kinds of instructions. Nor-
mally two program fetches are generated during each
machine cycle, even if the instruction being executed
doesn’t require it. If the instruction being executed
doesn’t need more code bytes, the CPU simply ignores
the extra fetch, and the Program Counter is not incre-
mented.

Execution of a one-cycle instruction (Figure 15A and
B) begins during State 1 of the machine cycle, when the
opcode is latched into the Instruction Register. A sec-
ond fetch occurs during S4 of the same machine cycle.
Execution is complete at the end of State 6 of this ma-
chine cycle.

The MOVX instructions take two machine cycles to
execute. No program fetch is generated during the sec-
ond cycle of a MOVX instruction. This is the only time
program fetches are skipped. The fetch/execute se-
quence for MOVX instructions is shown in Figure
15(D).

The fetch/execute sequences are the same whether the
Program Memory is internal or external to the chip.
Execution times do not depend on whether the Pro-
gram Memory is internal or external.

Figure 16 shows the signals and timing involved in pro-
gram fetches when the Program Memory is external. If
Program Memory is external, then the Program Memo-
ry read strobe PSEN is normally activated twice per
machine cycle, as shown in Figure 16(A).

If an access to external Data Memory occurs, as shown
in Figure 16(B), two PSENs are skipped, because the
address and data bus are being used for the Data Mem-
ory access.

Note that a Data Memory bus cycle takes twice as
much time as a Program Memory bus cycle. Figure 16
shows the relative timing of the addresses being emitted
at Ports 0 and 2, and of ALE and PSEN. ALE is used
to latch the low address byte from P0 into the address
latch.

270251–16

Figure 16. Bus Cycles in MCSÉ-51 Devices Executing from External Program Memory

15

MCSÉ-51 ARCHITECTURAL OVERVIEW

When the CPU is executing from internal Program
Memory, PSEN is not activated, and program address-
es are not emitted. However, ALE continues to be acti-
vated twice per machine cycle and so is available as a
clock output signal. Note, however, that one ALE is
skipped during the execution of the MOVX instruction.

Interrupt Structure

The 8051 core provides 5 interrupt sources: 2 external
interrupts, 2 timer interrupts, and the serial port inter-
rupt. What follows is an overview of the interrupt
structure for the 8051. Other MCS-51 devices have ad-
ditional interrupt sources and vectors as shown in Ta-
ble 1. Refer to the appropriate chapters on other devic-
es for further information on their interrupts.

INTERRUPT ENABLES

Each of the interrupt sources can be individually en-
abled or disabled by setting or clearing a bit in the SFR

(MSB) (LSB)

EA Ð Ð ES ET1 EX1 ET0 EX0

Enable bit e 1 enables the interrupt.
Enable bit e 0 disables it.

Symbol Position Function

EA IE.7 disables all interrupts. If EA e 0, no

interrupt will be acknowledged. If EA
e 1, each interrupt source is

individually enabled or disabled by

setting or clearing its enable bit.

Ð IE.6 reserved*
Ð IE.5 reserved*
ES IE.4 Serial Port Interrupt enable bit.

ET1 IE.3 Timer 1 Overflow Interrupt enable bit.

EX1 IE.2 External Interrupt 1 enable bit.

ET0 IE.1 Timer 0 Overflow Interrupt enable bit.

EX0 IE.0 External Interrupt 0 enable bit.

*These reserved bits are used in other MCS-51 devices.

Figure 17. IE (Interrupt Enable)

Register in the 8051

named IE (Interrupt Enable). This register also con-
tains a global disable bit, which can be cleared to dis-
able all interrupts at once. Figure 17 shows the IE reg-
ister for the 8051.

INTERRUPT PRIORITIES

Each interrupt source can also be individually pro-
grammed to one of two priority levels by setting or
clearing a bit in the SFR named IP (Interrupt Priority).
Figure 18 shows the IP register in the 8051.

A low-priority interrrupt can be interrupted by a high-
priority interrupt, but not by another low-priority inter-
rupt. A high-priority interrupt can’t be interrupted by
any other interrupt source.

If two interrupt requests of different priority levels are
received simultaneously, the request of higher priority
level is serviced. If interrupt requests of the same priori-
ty level are received simultaneously, an internal polling
sequence determines which request is serviced. Thus
within each priority level there is a second priority
structure determined by the polling sequence.

Figure 19 shows, for the 8051, how the IE and IP regis-
ters and the polling sequence work to determine which
if any interrupt will be serviced.

(MSB) (LSB)

Ð Ð Ð PS PT1 PX1 PT0 PX0

Priority bit e 1 assigns high priority.
Priority bit e 0 assigns low priority.

Symbol Position Function

Ð IP.7 reserved*
Ð IP.6 reserved*
Ð IP.5 reserved*
PS IP.4 Serial Port interrupt priority bit.

PT1 IP.3 Timer 1 interrupt priority bit.

PX1 IP.2 External Interrupt 1 priority bit.

PT0 IP.1 Timer 0 interrupt priority bit.

PX0 IP.0 External Interrupt 0 priority bit.

*These reserved bits are used in other MCS-51 devices.

Figure 18. IP (Interrupt Priority)

Register in the 8051

16

MCSÉ-51 ARCHITECTURAL OVERVIEW

270251–17

Figure 19. 8051 Interrupt Control System

In operation, all the interrupt flags are latched into the
interrupt control system during State 5 of every ma-
chine cycle. The samples are polled during the follow-
ing machine cycle. If the flag for an enabled interrupt is
found to be set (1), the interrupt system generates an
LCALL to the appropriate location in Program Memo-
ry, unless some other condition blocks the interrupt.
Several conditions can block an interrupt, among them
that an interrupt of equal or higher priority level is
already in progress.

The hardware-generated LCALL causes the contents of
the Program Counter to be pushed onto the stack, and
reloads the PC with the beginning address of the service
routine. As previously noted (Figure 3), the service rou-
tine for each interrupt begins at a fixed location.

Only the Program Counter is automatically pushed
onto the stack, not the PSW or any other register. Hav-
ing only the PC be automatically saved allows the pro-
grammer to decide how much time to spend saving
which other registers. This enhances the interrupt re-
sponse time, albeit at the expense of increasing the pro-
grammer’s burden of responsibility. As a result, many
interrupt functions that are typical in control applica-
tionsÐtoggling a port pin, for example, or reloading a
timer, or unloading a serial bufferÐcan often be com-

pleted in less time than it takes other architectures to
commence them.

SIMULATING A THIRD PRIORITY LEVEL IN
SOFTWARE

Some applications require more than the two priority
levels that are provided by on-chip hardware in
MCS-51 devices. In these cases, relatively simple soft-
ware can be written to produce the same effect as a
third priority level.

First, interrupts that are to have higher priority than 1
are assigned to priority 1 in the IP (Interrupt Priority)
register. The service routines for priority 1 interrupts
that are supposed to be interruptible by ‘‘priority 2’’
interrupts are written to include the following code:

PUSH IE
MOV IE,ÝMASK
CALL LABEL

(execute service routine)

POP IE
RET

LABEL: RETI

17

MCSÉ-51 ARCHITECTURAL OVERVIEW

As soon as any priority 1 interrupt is acknowledged,
the IE (Interrupt Enable) register is re-defined so as to
disable all but ‘‘priority 2’’ interrupts. Then, a CALL to
LABEL executes the RETI instruction, which clears
the priority 1 interrupt-in-progress flip-flop. At this
point any priority 1 interrupt that is enabled can be
serviced, but only ‘‘priority 2’’ interrupts are enabled.

POPping IE restores the original enable byte. Then a
normal RET (rather than another RETI) is used to
terminate the service routine. The additional software
adds 10 ms (at 12 MHz) to priority 1 interrupts.

ADDITIONAL REFERENCES

The following application notes are found in the Em-
bedded Control Applications handbook. (Order Num-
ber: 270648)

1. AP-69 ‘‘An Introduction to the Intel MCSÉ-51 Sin-
gle-Chip Microcomputer Family’’

2. AP-70 ‘‘Using the Intel MCSÉ-51 Boolean Process-
ing Capabilities’’

18

